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Abstract— The purpose of this study is to design an output 

feedback sliding mode control for Quadrature Buck 

Converter(QBC) whose popularity has increased over the last 

decade owing to the increasing Maximum Power Point 

Tracking(MPPT) applications and growing power quality 

concerns in the industry. QBC is non-minimum phase and 

discontinuous system thanks to the switching components which 

makes it challenging to design a controller. The plant in 

Continuous Conduction Mode(CCM) is modeled by state-space 

averaging method. Output Feedback Sliding Mode Controller 

which is capable of controlling the plants with non-minimum 

phase characteristics is designed for the QBC in the face of 

process line voltage and load variations. The performance of the 

ODSMC controlled QBC during changing load and supply 

voltage is examined by means of numerical simulations that are 

done in Matlab/Simulink. Based on the results that are 

presented, the considerable disturbance rejection is achieved. 

Keywords—QBC; ODSMC. 

I.  INTRODUCTION 

QBC is one type of Buck Converter with a high 

transformation ratio which is especially used in automotive 

industry and industrial power transformation. The use of DC-

DC converters in general has increased over the last couple 

of decades due to the improvement of manufacturing process 

of more efficient power switches and increasing industrial 

power conversion regulations regarding Total Harmonic 

Distortion(THD) and power quality [1]. QBC is a reducing 

type dc-dc converter whose state-space model is described by 

a 4th order discontinuous nonlinearity due to the switching 

components in the circuit [2]. In this study, the linear model 

of the plant was obtained by using the state-space averaging 

method however the method called circuit averaging method 

is also commonly used for the circuits that include switching 

components [3]. 

One of the most challenging issue with a control of a DC-

DC converter circuit is to design a controller capable of 

regulating the output voltage in the presence of change in the 

input voltage and current that is drawn in the load side. These 

disturbances can be handled by a robust control scheme [4]. 

Discrete output feedback control employed in applications 

where the matched uncertainties present problems such as 

aerospace and underwater vehicles. ODSMC control scheme 

is capable of mitigating the effects of the mentioned 

disturbances on the nominal operation of the converter [5]. 

Generally conventional Sliding Mode Control(SMC) has its 

limits if the plant is non-minimum phase and also require 

some type of state estimators. The controller can stabilize the 

plant which has the non-minimum characteristics with the 

help of the additional compensator dynamics [6]. 

This paper is arranged as follows, the converter nonlinear 

model is presented and the linear model using state space 

averaging method is derived in section II, design procedure 

of the controller is presented and the selection of the 

parameters that are needed is argued in section III. Finally, 

numerical simulations that are performed in 

MATLAB/SIMULINK for the different operating conditions 

of the plant are presented in section IV. 

II. SYSTEM MODELING 

QBC converter can be considered as cascaded Buck 

converter, because of that its transformation ratio is 𝐷2, 

where 𝐷 is the steady state duty cycle parameter. It is only 

capable of step down operations. It is used to distribute the 

supplied DC source to the electronic devices that require 

lower voltage level [7]. The QBC is illustrated in Fig 1. 

 
Fig. 1 Quadratic Buck Converter Circuit Diagram. 

As seen from the Fig. 1 the plant is 4th order since there 

are 2 inductances and 2 capacitances. The presence of 2 

switch components leads the system to have discontinuous 

nonlinear characteristics. Since there are 2 switching 

elements there are 4 combinations. However, for simplicity 

the combinations where the component are both in 

conduction and cut-off mode at the same time are usually 

ignored. These valid 2 combinations are called large signal 
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modes and they are averaged by weighting by the 

corresponding duration. The resulting state space model, also 

known as averaged large signal model is used to obtain the 

steady state values of the each state variable and using those 

variables, the small signal model is obtained. Small signal 

model, is a dynamic model and represents the behavior of the 

small signal components of the states where the small signal 

in this context is defined as the deviation from the determined 

steady state value. These procedures are explained in this 

section by determining the state space model of the each 

mode based on the position of the switches [8],[9].. When the 

transistor is in conduction mode, the state space model is 

represented as, 
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When the transistor is in cut-off mode, the state space 

model is given as, 
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Averaged large state space model is determined by 

averaging those state space representation in (1) and (2) with 

weighting by 𝑑, duty cycle parameter, and can be found as, 
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(3) 

where the states 𝑖1, 𝑖2, 𝑣1 and 𝑣2 are called large signals. They 

are composed of both a steady state which has a time 

derivative of zero and a small signal which is the deviation 

from the corresponding steady state [10],[11]. 

For instance, 𝑑, being one of the large signals in the 

averaged large signal model, can be found as, 

𝑑 = 𝐷 + Δ𝑑 (4) 

Substituting every large signal in (3), with their small 

signal and steady state component and also using the fact that 

time derivative of every steady state component is zero, small 

signal model of the plant can be found in state space form and 

is given as, 
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(5) 

This model is illustrated as block diagram in Fig 2, 

 

Fig. 2 Small Signal representation. 
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     The steady state values of the converter also specifies the 

operating condition of the plant is given in TABLE  I, 

TABLE  I.    OPERATING POINT 

𝑉𝑖𝑛 42 𝑉 𝑅 5 Ω 

𝑉𝑜𝑢𝑡 12 𝑉 𝐶1 28 𝜇𝐹 

𝐿1 400 𝜇𝐻 𝐶2 96 𝜇𝐹 

𝐿2 150 𝜇𝐻 𝑓𝑠𝑤 100 𝑘𝐻𝑧 

By substituting these parameters the small signal model 

is found numerically. Discrete model is required for 

ODSMC. It is determined by using the sampling period of 

𝑇𝑠 = 10 𝜇𝑠 and is given as, 

𝑥𝑝(𝑘 + 1) = [

0.6 0.19 −0.19 0.04
0.52 0.43 0.23 −0.47
2.71 −1.26 0.32 0.48
0.18 0.73 0.14 0.54

] 𝑥𝑝(𝑘)        

                                                                     + [

11.06
12.64

−1.875
6.55

]𝑢(𝑘) 

𝑦𝑝(𝑘) = [0 0 0 1]𝑥𝑝(𝑘) 

(6) 

III. CONTROLLER DESIGN 

In the previous section the discrete time state space model 

of the plant is derived. 

The controller is designed based on the small signal 

model of the plant which was derived in section II. The 

control strategy can be explained as follows. The controller 

produces the small signal component of actuator signal by 

processing the small signal part of the output signal that is 

measured. This small signal actuator signal, Δ𝑑 is 

incremented by its state space value, 𝐷 to obtain actuator 

signal, 𝑑 which is modulated by the PWM block at the 

frequency of 100 kHz. The modulated 𝑑 signal is applied to 

do gate of the switch in the DC-DC converter. This process 

is illustrated by the block diagram given in Fig 3.  

In this section the controller algorithm is explained and 

the determination of the required parameters is discussed. 

As it can be seen from the block diagram, the controller 

has one input variable that is available to manipulation, the 

other 2 input signals, 𝑣𝑔 and 𝑖𝐿𝑜𝑎𝑑  are seen in the figure are 

the disturbances and the important purpose of the controller 

is to maintain a stable performance even in the case of 

varying of those parameters. Another interesting aspect of 

this problem is to consider the changing of the plant 

components which is beyond the scope of this study. Sliding 

Mode Control is a type of nonlinear control and has attracted 

the researchers’ attention due to its ability to suppress the 

disturbances that affect the plant from the same channel of 

actuator signals. These types of disturbances are generally 

called matched uncertainties and are assumed to be unknown 

but bounded by certain physical constraints [12]. 

A discrete state space model is given as, 

𝑥𝑝(𝑘 + 1) = 𝐺𝑝𝑥𝑝(𝑘) + 𝐻𝑝(𝑢(𝑘) + 𝜉(𝑘))

𝑦𝑝(𝑘) = 𝐶𝑝𝑥𝑝(𝑘)
 

(7) 

where 𝑥𝑝 ∈ ℝ𝑛, 𝑢 ∈ ℝ𝑚, 𝑦 ∈ ℝ𝑝 are the state, input and 

output vectors belonging to the plant respectively. 𝐺𝑝 ∈

ℝ𝑛𝑥𝑛 , 𝐻𝑝 ∈ ℝ𝑛𝑥𝑚, 𝐶𝑝 ∈ ℝ𝑝𝑥𝑛 are state matrices that denote 

state transition matrix, input and  output distribution matrices 

respectively. 𝜉 denotes matched uncertainty. 

First design step of SMC is to determine a set, which is 

known as sliding manifold, that the state vector is meant to 

be driven onto the set and it is tried to be confined within a 

close neighborhood of this set by controller action. After 

determining such a set, next step is to guarantee that the states 

will remain on that set and converge to the desired point 

despite mentioned disturbances [13]. The sliding manifold 

can be represented as, 

𝒮 = {𝑥𝑝 ∈ ℝ𝑛: 𝑆(𝑥𝑝) = 0} (8) 

where the function 𝑆 is used to define the set and it can be 

chosen as a linear function. As it can be seen from the 

expression that statement assumes the availability of the plant 

states and because of that this control strategy cannot be 

employed for the non-minimum phase systems [14]. To 

overcome these issues output feedback type controller known 

as ODSMC which requires more calculations is studied. The 

next step of designing a ODSMC is to define a new fictitious 

plant which is represented by the system matrices 

(𝐺𝑝 , 𝐻𝑝 , 𝐿𝑝) where 𝐿𝑝 ∈ ℝ𝑝x𝑛 is defined as the output 

distribution matrix of the fictitious model [15]. To simplify 

the determination of the controller parameters, a coordinate 

transformation is required and leads to a canonical form 

whose state matrices are given as,  

𝐺𝑝̂ = [
𝐺11 𝐺12

𝐺21 𝐺22
] , 𝐻𝑝̂ = [

0
𝐻2

] , 𝐿𝑝̂ = [0 𝑇] (9) 

where 𝑥1 ∈ ℝ𝑛−𝑚, 𝐺11 ∈ ℝ(𝑛−𝑚)𝑥(𝑛−𝑚), 𝐻2 ∈ ℝ𝑚𝑥𝑚 and 

𝑇 ∈ ℝ𝑝𝑥𝑝 is an orthogonal matrix. The controller is mainly 

designed to regulate the output voltage. However, there might 

be some applications at which this output voltage is set to a 

different value. For the purpose of reference tracking 

integrator is introduced, whose dynamics represented as, 
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Fig. 3. Block diagram of ODSMC strategy 

𝑥𝑟(𝑘 + 1) = 𝑥𝑟(𝑘) + 𝑇𝑠 (𝑟(𝑘) − 𝐶𝑃𝑥𝑝(𝑘)) (10) 

where 𝑥𝑟 , 𝑟 ∈ ℝ𝑝 and 𝑇𝑠 are the state variable of the integrator 

dynamic equation, the reference signal to be tracked and the 

sampling period respectively. This dynamic equation is 

illustrated by the block diagram in fig 4, 

 

Fig. 4. Integrator sub-block diagram 

Another block which is called compensator is added to 

the controller, because the plant poses invariant zeros. The 

compensator dynamics are given by, 

𝑥𝑐(𝑘 + 1) = Φ𝑥𝑐(𝑘) + Γ1𝑦 + Γ2𝑥𝑟 + Γ3𝑟 (11) 

where 𝑥𝑐 is compensator state variable and Φ, Γ1, Γ2, Γ3 are 

the design parameters that are yet to be chosen. The 

compensator is illustrated by the block diagram in Fig 5. 

 

Fig. 5. Compensator sub-block diagram 

     When the states are on the sliding surface, compensator 

parameters can be found as, 

Φ = 𝐺11 − Ω𝑇𝐺21 − 𝐺21𝐾1 + 𝐿𝑇𝐺22𝐾1

Γ1 = Ω
Γ2 = −𝐺12𝐾𝑟 + Ω𝑇𝐺22𝐾𝑟

Γ3 = −𝐺12𝑆𝑟 + Ω𝑇𝐺22𝑆𝑟

 

(12) 

where 𝐾1 ∈ ℝ𝑚𝑥(𝑛−𝑚), 𝐾𝑟 , 𝑆𝑟 ∈ ℝ𝑚𝑥𝑚 , Ω ∈ ℝ(𝑛−𝑚)𝑥𝑚 are 

the parameters that are used to represent the sliding manifold. 

After adding the compensator and integrator dynamics to 

the plant and augmented state space model can be represented 

as, 

𝑥𝑎(𝑘 + 1) = 𝐺𝑎𝑥𝑎(𝑘) + 𝐻𝑎(𝑢(𝑘) + 𝜉(𝑘))

+ 𝐻𝑟𝑟(𝑘),
𝑦𝑎(𝑘) = 𝐶𝑎𝑥𝑎(𝑘) 

(13) 

where 𝐺𝑎 ∈ ℝ(2𝑛−𝑚+𝑝)𝑥(2𝑛−𝑚+𝑝), 𝐻𝑎 ∈ ℝ(2𝑛−𝑚+𝑝)𝑥𝑚, 𝐻𝑟 ∈

ℝ(2𝑛−𝑚+𝑝)𝑥𝑝. Augmented state is represented as, 

𝑥𝑎 = [

𝑥𝑐

𝑥𝑟

𝑥1

𝑥2

] 

(14) 

     After the establishment of the augment system, the control 

law can be written as, 

𝑢(𝑘) = −(𝐹𝐶𝑎𝐺𝑎
−1𝐻𝑎)−1(𝐹𝐶𝑎𝑥𝑎(𝑘)

+ (𝐹𝐶𝑎𝐺𝑎
−1𝐻𝑟 + 𝐹2𝑆𝑟)𝑟(𝑘)) 

(15) 

where 𝐹 ∈ ℝ𝑚𝑥𝑚 is another design parameter that is 

expressed in terms of the variables mentioned before and is 

given as, 

𝐹 = 𝐹2[𝐾1Φ 𝐾1Γ2 + 𝐾𝑟 𝐾1Γ1 − 𝐾𝑟𝑇𝑠 + 𝑇𝑇] (16) 

where 𝐹2 ∈ ℝ𝑚𝑥𝑚 is constant that has no effect on the 

performance directly. However, it is required to satisfy the 

constraints that is related to the reaching condition that is 

given as, 

𝐹𝐶𝑎 = 𝐻𝑎
𝑇𝑃𝑎𝐺𝑎 (17) 
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where 𝑃𝑎 ∈ ℝ(2𝑛−𝑚+𝑝)𝑥(2𝑛−𝑚+𝑝) is a positive definite that is 

necessary to guarantee that the designed controller satisfies 

the sliding mode reaching condition. To determine if the 

controller satisfies the reaching condition, the energy like 

Lyapunov function is defined as, 

𝑉𝑎(𝑘) = 𝑥𝑎(𝑘)𝑃𝑎𝑥𝑎(𝑘)𝑇  (18) 

where 𝑉𝑎 is a positive and decreasing function of the 

augmented state vector. 

The other controller parameters 𝐾1, 𝐾𝑟 and Ω is 

determined after a specific coordinate transformation of the 

augmented system [16]. The change of coordinates is made 

by using the transformation matrix that is given by, 

𝑇̃ = [

𝐼𝑛−𝑚 −𝐼𝑛−𝑚 0 0
0 𝐼𝑛−𝑚 0 0
0 0 𝐼𝑚 0
0 𝐾1 𝐾𝑟 𝐼𝑚

] 

(19) 

      Considering the control law that is given in (15), the 

transformed close loop system matrix is determined to be, 

𝐺̃𝑐 ≔ 𝐺̃ − 𝐻̃(𝐹𝐿̃𝐻)
−1

𝐹𝐶̃ (20) 

and whose eigenvalues must lie inside the unit circle. This 

coordinate transformation facilitates the parameter 

determination and results with 𝐺̃𝑐 in (20) the transformed 

close loop state matrix 𝐺̃𝑐 can be expressed as, 

𝐺̃𝑐 = [

𝐺11 − Ω𝑇𝐺21 0 ∗

∗ 𝐺̃𝑚 ∗
0 0 0

] 
(21) 

Since 𝐺̃𝑐 has a block diagram form, the problem of 

determining whether the matrix is stable or not can be 

reduced to determining the stability of these 3 lower 

dimensional matrices [17]. One of these matrices, 𝐺̃𝑚 can be 

written as, 

𝐺̃𝑚 = [
𝐺11 0

−𝑇𝑠𝑇𝐺21 𝐼𝑚
] − [

𝐺12

−𝑇𝑠𝑇𝐺22
] [𝐾1 𝐾𝑟] 

(22) 

By using that equality, 𝐾1 and 𝐾𝑟  can be selected such that 

𝐺̃𝑚 is stable. Another matrix design freedom Ω is chosen such 

that the matrix 𝐺11 − Ω𝑇𝐺21 is stable [18]. 

For the QBC, the controller parameters were selected 

such that the 𝑚𝑎𝑥(|𝜆(𝐺11 − Ω𝑇𝐺21)|) = 0.87 and 

𝑚𝑎𝑥(|𝜆(𝐺𝑚̃)|) = 0.35. Matlab software is utilized during 

the mentioned pole placement operations. 

Resulting from the assigned poles, controller parameters 

are determined to be, 

Ω = [
0.7992
0.375
2.9888

] 𝐾1 = [
0.1675

−0.0505
−0.5498

]

𝑇

𝐾𝑟 = 36.095 𝑆𝑟 = 1.2

 

(23) 

Lastly the whole control scheme is illustrated in Fig 6. 

 

Fig. 6. Compensator sub-block diagram 

IV. SIMULATION RESULTS 

In the previous sections, the plant is modelled and discrete 

time small signal representation is derived based on the 

operating point that is presented in the table I. Controller is 

designed based on that model. To assess the performance of 

the ODSMC, overall system is simulated in Matlab/Simulink 

environment. To test the robustness, the disturbance signals 

were applied during the operation. Applied input voltage and 

current that is drawn by the resistive load waveforms are 

given in the Fig 7 and Fig 8 respectively. The performance of 

the controller can be illustrated by the output voltage 

waveform that is given in Fig 9. As it can be seen from the 

Fig 9, the ODSMC is successful in maintaining the stable 

operation in the face of applied disturbances. In addition to 

the disturbances, ODSMC achieves reasonable performance 

during the changing output voltage reference that indicates a 

robust performance. 

 
Fig. 7. Load current disturbance 

 
Fig. 8. Input voltage disturbance 

 
Fig. 9. Comparison of output and reference output voltage 

732



 
Fig. 10. Evolution of three of the states in state space  

     To illustrate the sliding mode control action, in Fig 10 

three of the four states are drawn in 3 dimension. It is also 

seen that the control action that is used is discrete from the 

evolution of the states. At 𝑡 = 0,𝑡 = 1.5 and 𝑡 = 2.5 the 

states converge the corresponding desired point that is 

highlighted by black, red and green circles respectively.  

V. CONCLUSIONS AND FUTURE WORK 

In this paper, the small signal state space model of QBC 

has been derived. An ODSMC is designed and its key 

parameters have been found after choosing the new pole 

locations of the augmented system. For the sake of 

constraining the internal states of the converter, the new poles 

have been placed in a certain neighborhood of the current 

poles. The design procedure of the controller and its 

implementation in the plant in question has been discussed 

thoroughly. Finally, the results of the numerical simulations 

that take place in Matlab/Simulink have been given and 

interpreted. As it can be seen from the previous section, 

ODSMC is capable of regulating the output voltage in a wide 

range of operating conditions. 
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